Harmonic analysis on quantum tori

Quanhua Xu

Wuhan University
and
Université de Besançon

Shanghai - July 2012
Joint work with Zeqian Chen and Yin Zhi

Quantum tori

Let $\theta \in \mathbb{R}$. Let U and V be two unitary operators on a Hilbert space H satisfying the following commutation relation:

$$
U V=e^{2 \pi \mathrm{i} \theta} V U
$$

Example: $H=L_{2}(\mathbb{T})$ with \mathbb{T} the unit circle; U and V are given:

$$
U f(z)=z f(z) \quad \text { and } \quad V f(z)=f\left(e^{-2 \pi \mathrm{i} \theta} z\right), \quad f \in L_{2}(\mathbb{T}), z \in \mathbb{T}
$$

Quantum tori

Let $\theta \in \mathbb{R}$. Let U and V be two unitary operators on a Hilbert space H satisfying the following commutation relation:

$$
U V=e^{2 \pi \mathrm{i} \theta} V U
$$

Example: $H=L_{2}(\mathbb{T})$ with \mathbb{T} the unit circle; U and V are given:

$$
U f(z)=z f(z) \quad \text { and } \quad V f(z)=f\left(e^{-2 \pi \mathrm{i} \theta} z\right), \quad f \in L_{2}(\mathbb{T}), z \in \mathbb{T}
$$

Let \mathcal{A}_{θ} be the universal C^{*}-algebra generated by U and V. This is a quantum (or noncommutative) 2 -torus. If θ is irrational, \mathcal{A}_{θ} is an irrational rotation C^{*}-algebra. The quantum tori are fundamental examples, probably the most accessible examples for operator algebras and noncommutative geometry.

More generally, let $d \geq 2$ and $\theta=\left(\theta_{k j}\right)$ be a $d \times d$ real skew-symmetric matrix, i.e. $\theta^{t}=-\theta$. Let U_{1}, \ldots, U_{d} be d unitary operators on H satisfying

$$
U_{k} U_{j}=e^{2 \pi i \theta_{k j}} U_{j} U_{k}, j, k=1, \ldots, d
$$

Let \mathcal{A}_{θ} be the universal C^{*}-algebra generated by U_{1}, \ldots, U_{d}. This is the noncommutative d-torus associated with θ. In this talk $U=\left(U_{1}, \cdots, U_{d}\right), \theta$ and \mathcal{A}_{θ} will be fixed as above.

More generally, let $d \geq 2$ and $\theta=\left(\theta_{k j}\right)$ be a $d \times d$ real skew-symmetric matrix, i.e. $\theta^{t}=-\theta$. Let U_{1}, \ldots, U_{d} be d unitary operators on H satisfying

$$
U_{k} U_{j}=e^{2 \pi i \theta_{k j}} U_{j} U_{k}, j, k=1, \ldots, d .
$$

Let \mathcal{A}_{θ} be the universal C^{*}-algebra generated by U_{1}, \ldots, U_{d}. This is the noncommutative d-torus associated with θ. In this talk $U=\left(U_{1}, \cdots, U_{d}\right), \theta$ and \mathcal{A}_{θ} will be fixed as above.

Notation used throughout the talk:

- Elements of \mathbb{Z}^{d} are denoted by $m=\left(m_{1}, \cdots, m_{d}\right)$.
- \mathbb{T}^{d} is the usual d-torus:

$$
\mathbb{T}^{d}=\left\{\left(z_{1}, \ldots, z_{d}\right):\left|z_{j}\right|=1, z_{j} \in \mathbb{C}\right\}
$$

- For $m \in \mathbb{Z}^{d}$ and $z=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{T}^{d}$ let

$$
z^{m}=z_{1}^{m_{1}} \cdots z_{d}^{m_{d}} \quad \text { and } \quad U^{m}=U_{1}^{m_{1}} \ldots U_{d}^{m_{d}},
$$

where $U=\left(U_{1}, \ldots, U_{d}\right)$.

Trace - noncommutative measure

A polynomial in $U=\left(U_{1}, \cdots, U_{d}\right)$ is a finite sum

$$
x=\sum_{m \in \mathbb{Z}^{d}} \alpha_{m} U^{m} \in \mathcal{A}_{\theta} \quad \text { with } \quad \alpha_{m} \in \mathbb{C} .
$$

Let \mathcal{P}_{θ} denote the involutive subalgebra of all such polynomials. Then \mathcal{P}_{θ} is dense in \mathcal{A}_{θ}. For any x as above define

$$
\tau(x)=\alpha_{0} \quad \text { with } \quad 0=(0, \cdots, 0)
$$

Then τ extends to a faithful tracial state on \mathcal{A}_{θ}.

Trace - noncommutative measure

A polynomial in $U=\left(U_{1}, \cdots, U_{d}\right)$ is a finite sum

$$
x=\sum_{m \in \mathbb{Z}^{d}} \alpha_{m} U^{m} \in \mathcal{A}_{\theta} \quad \text { with } \quad \alpha_{m} \in \mathbb{C} .
$$

Let \mathcal{P}_{θ} denote the involutive subalgebra of all such polynomials. Then \mathcal{P}_{θ} is dense in \mathcal{A}_{θ}. For any x as above define

$$
\tau(x)=\alpha_{0} \quad \text { with } \quad \mathbf{0}=(0, \cdots, 0) .
$$

Then τ extends to a faithful tracial state on \mathcal{A}_{θ}. Let \mathbb{T}_{θ}^{d} be the w^{*}-closure of \mathcal{A}_{θ} in the GNS representation of τ. Then τ becomes a normal faithful tracial state on \mathbb{T}_{θ}^{d}. Thus $\left(\mathbb{T}_{\theta}^{d}, \tau\right)$ is a tracial noncommutative probability space.

Noncommutative L_{p}-spaces

For $1 \leq p<\infty$ and $x \in \mathbb{T}_{\theta}^{d}$ let

$$
\|x\|_{p}=\left(\tau\left(|x|^{p}\right)\right)^{\frac{1}{p}} \quad \text { with } \quad|x|=\left(x^{*} x\right)^{\frac{1}{2}}
$$

This defines a norm on \mathbb{T}_{θ}^{d}. The corresponding completion is denoted by $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. We also set $L_{\infty}\left(\mathbb{T}_{\theta}^{d}\right)=\mathbb{T}_{\theta}^{d}$.

Noncommutative L_{p}-spaces

For $1 \leq p<\infty$ and $x \in \mathbb{T}_{\theta}^{d}$ let

$$
\|x\|_{p}=\left(\tau\left(|x|^{p}\right)\right)^{\frac{1}{p}} \quad \text { with } \quad|x|=\left(x^{*} x\right)^{\frac{1}{2}}
$$

This defines a norm on \mathbb{T}_{θ}^{d}. The corresponding completion is denoted by $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. We also set $L_{\infty}\left(\mathbb{T}_{\theta}^{d}\right)=\mathbb{T}_{\theta}^{d}$.
The philosophy behind is explained as follows:
probability space $\left(\mathbb{T}^{d}, \mu\right) \leftrightarrow$ noncom probability space $\left(\mathbb{T}_{\theta}^{d}, \tau\right)$

Noncommutative L_{p}-spaces

For $1 \leq p<\infty$ and $x \in \mathbb{T}_{\theta}^{d}$ let

$$
\|x\|_{p}=\left(\tau\left(|x|^{p}\right)\right)^{\frac{1}{p}} \quad \text { with } \quad|x|=\left(x^{*} x\right)^{\frac{1}{2}}
$$

This defines a norm on \mathbb{T}_{θ}^{d}. The corresponding completion is denoted by $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. We also set $L_{\infty}\left(\mathbb{T}_{\theta}^{d}\right)=\mathbb{T}_{\theta}^{d}$.
The philosophy behind is explained as follows:
probability space $\left(\mathbb{T}^{d}, \mu\right) \leftrightarrow$ noncom probability space $\left(\mathbb{T}_{\theta}^{d}, \tau\right)$ commutative algebra $L_{\infty}\left(\mathbb{T}^{d}\right) \leftrightarrow$ noncommutative algebra \mathbb{T}_{θ}^{d}

Noncommutative L_{p}-spaces

For $1 \leq p<\infty$ and $x \in \mathbb{T}_{\theta}^{d}$ let

$$
\|x\|_{p}=\left(\tau\left(|x|^{p}\right)\right)^{\frac{1}{p}} \quad \text { with } \quad|x|=\left(x^{*} x\right)^{\frac{1}{2}}
$$

This defines a norm on \mathbb{T}_{θ}^{d}. The corresponding completion is denoted by $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. We also set $L_{\infty}\left(\mathbb{T}_{\theta}^{d}\right)=\mathbb{T}_{\theta}^{d}$.
The philosophy behind is explained as follows:
probability space $\left(\mathbb{T}^{d}, \mu\right) \leftrightarrow$ noncom probability space $\left(\mathbb{T}_{\theta}^{d}, \tau\right)$ commutative algebra $L_{\infty}\left(\mathbb{T}^{d}\right) \leftrightarrow$ noncommutative algebra \mathbb{T}_{θ}^{d}

$$
\text { integration against } \mu \int_{\mathbb{T}^{d}} \leftrightarrow \text { trace } \tau
$$

Noncommutative L_{p}-spaces

For $1 \leq p<\infty$ and $x \in \mathbb{T}_{\theta}^{d}$ let

$$
\|x\|_{p}=\left(\tau\left(|x|^{p}\right)\right)^{\frac{1}{p}} \quad \text { with } \quad|x|=\left(x^{*} x\right)^{\frac{1}{2}}
$$

This defines a norm on \mathbb{T}_{θ}^{d}. The corresponding completion is denoted by $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. We also set $L_{\infty}\left(\mathbb{T}_{\theta}^{d}\right)=\mathbb{T}_{\theta}^{d}$.
The philosophy behind is explained as follows:
probability space $\left(\mathbb{T}^{d}, \mu\right) \leftrightarrow$ noncom probability space $\left(\mathbb{T}_{\theta}^{d}, \tau\right)$ commutative algebra $L_{\infty}\left(\mathbb{T}^{d}\right) \leftrightarrow$ noncommutative algebra \mathbb{T}_{θ}^{d}
integration against $\mu \int_{\mathbb{T}^{d}} \leftrightarrow$ trace τ

$$
\int_{\mathbb{T}^{d}}: L_{\infty}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{C} \leftrightarrow \tau: \mathbb{T}_{\theta}^{d} \rightarrow \mathbb{C}
$$

Noncommutative L_{p}-spaces

For $1 \leq p<\infty$ and $x \in \mathbb{T}_{\theta}^{d}$ let

$$
\|x\|_{p}=\left(\tau\left(|x|^{p}\right)\right)^{\frac{1}{p}} \quad \text { with } \quad|x|=\left(x^{*} x\right)^{\frac{1}{2}}
$$

This defines a norm on \mathbb{T}_{θ}^{d}. The corresponding completion is denoted by $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. We also set $L_{\infty}\left(\mathbb{T}_{\theta}^{d}\right)=\mathbb{T}_{\theta}^{d}$.
The philosophy behind is explained as follows:
probability space $\left(\mathbb{T}^{d}, \mu\right) \leftrightarrow$ noncom probability space $\left(\mathbb{T}_{\theta}^{d}, \tau\right)$ commutative algebra $L_{\infty}\left(\mathbb{T}^{d}\right) \leftrightarrow$ noncommutative algebra \mathbb{T}_{θ}^{d}
integration against $\mu \int_{\mathbb{T}^{d}} \leftrightarrow$ trace τ

$$
\begin{aligned}
\int_{\mathbb{T}^{d}}: L_{\infty}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{C} & \leftrightarrow \tau: \mathbb{T}_{\theta}^{d} \rightarrow \mathbb{C} \\
\int_{\mathbb{T}^{d}} f d \mu & \leftrightarrow \tau(x)
\end{aligned}
$$

Noncommutative L_{p}-spaces

For $1 \leq p<\infty$ and $x \in \mathbb{T}_{\theta}^{d}$ let

$$
\|x\|_{p}=\left(\tau\left(|x|^{p}\right)\right)^{\frac{1}{p}} \quad \text { with } \quad|x|=\left(x^{*} x\right)^{\frac{1}{2}}
$$

This defines a norm on \mathbb{T}_{θ}^{d}. The corresponding completion is denoted by $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. We also set $L_{\infty}\left(\mathbb{T}_{\theta}^{d}\right)=\mathbb{T}_{\theta}^{d}$.
The philosophy behind is explained as follows:
probability space $\left(\mathbb{T}^{d}, \mu\right) \leftrightarrow$ noncom probability space $\left(\mathbb{T}_{\theta}^{d}, \tau\right)$ commutative algebra $L_{\infty}\left(\mathbb{T}^{d}\right) \leftrightarrow$ noncommutative algebra \mathbb{T}_{θ}^{d}
integration against $\mu \int_{\mathbb{T}^{d}} \leftrightarrow$ trace τ

$$
\begin{aligned}
\int_{\mathbb{T}^{d}}: L_{\infty}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{C} & \leftrightarrow \tau: \mathbb{T}_{\theta}^{d} \rightarrow \mathbb{C} \\
\int_{\mathbb{T}^{d}} f d \mu & \leftrightarrow \tau(x) \\
\|f\|_{p}=\left(\int_{\mathbb{T}^{d}}|f|^{p} d \mu\right)^{\frac{1}{p}} & \leftrightarrow\|x\|_{p}=\left(\tau\left(|x|^{p}\right)\right)^{\frac{1}{p}}
\end{aligned}
$$

Noncommutative L_{p}-spaces

For $1 \leq p<\infty$ and $x \in \mathbb{T}_{\theta}^{d}$ let

$$
\|x\|_{p}=\left(\tau\left(|x|^{p}\right)\right)^{\frac{1}{p}} \quad \text { with } \quad|x|=\left(x^{*} x\right)^{\frac{1}{2}}
$$

This defines a norm on \mathbb{T}_{θ}^{d}. The corresponding completion is denoted by $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. We also set $L_{\infty}\left(\mathbb{T}_{\theta}^{d}\right)=\mathbb{T}_{\theta}^{d}$.
The philosophy behind is explained as follows:
probability space $\left(\mathbb{T}^{d}, \mu\right) \leftrightarrow$ noncom probability space $\left(\mathbb{T}_{\theta}^{d}, \tau\right)$ commutative algebra $L_{\infty}\left(\mathbb{T}^{d}\right) \leftrightarrow$ noncommutative algebra \mathbb{T}_{θ}^{d}

$$
\begin{aligned}
\text { integration against } \mu \int_{\mathbb{T}^{d}} & \leftrightarrow \text { trace } \tau \\
\int_{\mathbb{T}^{d}}: L_{\infty}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{C} & \leftrightarrow \tau: \mathbb{T}_{\theta}^{d} \rightarrow \mathbb{C} \\
\int_{\mathbb{T}^{d}} f d \mu & \leftrightarrow \tau(x) \\
\|f\|_{p}=\left(\int_{\mathbb{T}^{d}}|f|^{p} d \mu\right)^{\frac{1}{p}} & \leftrightarrow\|x\|_{p}=\left(\tau\left(|x|^{p}\right)\right)^{\frac{1}{p}} \\
L_{p}\left(\mathbb{T}^{d}\right) & \leftrightarrow L_{p}\left(\mathbb{T}_{\theta}^{d}\right)
\end{aligned}
$$

Fourier coefficients

The trace τ extends to a contractive functional on $L_{1}\left(\mathbb{T}_{\theta}^{d}\right)$. Thus given $x \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ define

$$
\hat{x}(m)=\tau\left(\left(U^{m}\right)^{*} x\right)=\alpha_{m}, \quad m \in \mathbb{Z}^{d} .
$$

These are the Fourier coefficients of x. Like in the classical case we formally write

$$
x \sim \sum_{m \in \mathbb{Z}^{d}} \hat{x}(m) U^{m} .
$$

This is the Fourier series of $x ; x$ is uniquely determined by its Fourier series.
We will study various properties of Fourier series like multipliers, mean and pointwise convergence.

Fourier multipliers on the usual d-torus

Let $\phi=\left\{\phi_{m}\right\}_{m \in \mathbb{Z}^{d}} \subset \mathbb{C}$. Recall that ϕ is a Fourier multiplier on $L_{p}\left(\mathbb{T}^{d}\right)$ if the map

$$
\sum_{m \in \mathbb{Z}^{d}} \alpha_{m} z^{m} \mapsto \sum_{m \in \mathbb{Z}^{d}} \phi_{m} \alpha_{m} z^{m}
$$

is bounded on $L_{p}\left(\mathbb{T}^{d}\right)$. Let $M\left(L_{p}\left(\mathbb{T}^{d}\right)\right)$ denote the space of all Fourier multipliers on $L_{p}\left(\mathbb{T}^{d}\right)$, equipped with the natural norm.

Fourier multipliers on the usual d-torus

Let $\phi=\left\{\phi_{m}\right\}_{m \in \mathbb{Z}^{d}} \subset \mathbb{C}$. Recall that ϕ is a Fourier multiplier on $L_{p}\left(\mathbb{T}^{d}\right)$ if the map

$$
\sum_{m \in \mathbb{Z}^{d}} \alpha_{m} z^{m} \mapsto \sum_{m \in \mathbb{Z}^{d}} \phi_{m} \alpha_{m} z^{m}
$$

is bounded on $L_{p}\left(\mathbb{T}^{d}\right)$. Let $M\left(L_{p}\left(\mathbb{T}^{d}\right)\right)$ denote the space of all Fourier multipliers on $L_{p}\left(\mathbb{T}^{d}\right)$, equipped with the natural norm.

Simple facts.

- $M\left(L_{2}\left(\mathbb{T}^{d}\right)\right)=\ell_{\infty}\left(\mathbb{Z}^{d}\right)$
- $M\left(L_{p}\left(\mathbb{T}^{d}\right)\right)=M\left(L_{p^{\prime}}\left(\mathbb{T}^{d}\right)\right)$ with p^{\prime} the conjugate index of p
- $\phi \in M\left(L_{1}\left(\mathbb{T}^{d}\right)\right)$ iff ϕ is the Fourier transform of a bounded measure, i.e., $\exists \mu$, a bounded measure on \mathbb{T}^{d} s.t. $\widehat{\mu}(m)=\phi_{m}$ for all $m \in \mathbb{Z}^{d}$.

Completely bounded multipliers

We will also need completely bounded multipliers. Recall that a map T is completely bounded (cb for short) on $L_{p}\left(\mathbb{T}^{d}\right)$ if $T \otimes \operatorname{Id}_{S_{p}}$ is bounded on $L_{p}\left(\mathbb{T}^{d} ; S_{p}\right)$, where S_{p} denotes the Schatten p-class. We then set

$$
\|T\|_{\mathrm{cb}}=\left\|T \otimes \operatorname{Id}_{S_{p}}\right\| .
$$

ϕ is called a cb Fourier multiplier on $L_{p}\left(\mathbb{T}^{d}\right)$ if T_{ϕ} is cb on $L_{p}\left(\mathbb{T}^{d}\right) . M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right)$ denotes the space of all cb Fourier multipliers on $L_{p}\left(\mathbb{T}^{d}\right)$.

Completely bounded multipliers

We will also need completely bounded multipliers. Recall that a map T is completely bounded (cb for short) on $L_{p}\left(\mathbb{T}^{d}\right)$ if $T \otimes \operatorname{Id}_{S_{\rho}}$ is bounded on $L_{p}\left(\mathbb{T}^{d} ; S_{p}\right)$, where S_{p} denotes the Schatten p-class. We then set

$$
\|T\|_{\mathrm{cb}}=\left\|T \otimes \operatorname{Id}_{s_{p}}\right\| .
$$

ϕ is called a cb Fourier multiplier on $L_{p}\left(\mathbb{T}^{d}\right)$ if T_{ϕ} is cb on $L_{p}\left(\mathbb{T}^{d}\right) \cdot M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right)$ denotes the space of all cb Fourier multipliers on $L_{p}\left(\mathbb{T}^{d}\right)$.
It is known that

$$
M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right)=M\left(L_{p}\left(\mathbb{T}^{d}\right)\right)
$$

for $p \in\{1,2, \infty\}$, and only for these three values of p.

Fourier multipliers on the quantum torus

Similarly, we define Fourier multipliers on the noncommutative d-torus \mathbb{T}_{θ}^{d}.
Again, let $\phi=\left\{\phi_{m}\right\}_{m \in \mathbb{Z}^{d}} \subset \mathbb{C}$ and

$$
T_{\phi}: \sum_{m \in \mathbb{Z}^{d}} \alpha_{m} U^{m} \mapsto \sum_{m \in \mathbb{Z}^{d}} \phi_{m} \alpha_{m} U^{m}
$$

for any polynomial $x \in \mathcal{P}_{\theta}$. We call ϕ a Fourier multiplier on $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ if T_{ϕ} extends to a bounded map on $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. Let $M\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)$ denote the space of all L_{p} Fourier multipliers on \mathbb{T}_{θ}^{d}.

Fourier multipliers on the quantum torus

Similarly, we define Fourier multipliers on the noncommutative d-torus \mathbb{T}_{θ}^{d}. Again, let $\phi=\left\{\phi_{m}\right\}_{m \in \mathbb{Z}^{d}} \subset \mathbb{C}$ and

$$
T_{\phi}: \sum_{m \in \mathbb{Z}^{d}} \alpha_{m} U^{m} \mapsto \sum_{m \in \mathbb{Z}^{d}} \phi_{m} \alpha_{m} U^{m}
$$

for any polynomial $x \in \mathcal{P}_{\theta}$. We call ϕ a Fourier multiplier on $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ if T_{ϕ} extends to a bounded map on $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. Let $M\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)$ denote the space of all L_{p} Fourier multipliers on \mathbb{T}_{θ}^{d}. Similarly, we define cb Fourier multipliers on $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ and introduce the corresponding space $M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)$.
Recall that T_{ϕ} is cb on $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ if $\mathrm{Id} \otimes T$ is bounded on $L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} \mathbb{T}_{\theta}^{d}\right)$.

Theorem. Let $2 \leq p \leq \infty$. Then

$$
M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)=M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right)
$$

Theorem. Let $2 \leq p \leq \infty$. Then

$$
M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)=M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right)
$$

Proof. Easy direction (independently by Junge, Mei, Parcet):

$$
M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right) \subset M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)
$$

The tool is transference.

Theorem. Let $2 \leq p \leq \infty$. Then

$$
M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)=M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right)
$$

Proof. Easy direction (independently by Junge, Mei, Parcet):

$$
M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right) \subset M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)
$$

The tool is transference. Let $\phi \in M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right)$ and $x \in L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} \mathbb{T}_{\theta}^{d}\right)$. For $z \in \mathbb{T}^{d}$ define

$$
\pi_{z}(x)=\sum_{m \in \mathbb{Z}^{d}} \hat{x}(m) \otimes U^{m} z^{m}
$$

Then π_{z} is an isometry on $L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} \mathbb{T}_{\theta}^{d}\right)$.

Theorem. Let $2 \leq p \leq \infty$. Then

$$
M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)=M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right)
$$

Proof. Easy direction (independently by Junge, Mei, Parcet):

$$
M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right) \subset M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)
$$

The tool is transference. Let $\phi \in M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right)$ and $x \in L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes}_{\mathbb{T}_{\theta}^{d}}^{d}\right)$. For $z \in \mathbb{T}^{d}$ define

$$
\pi_{z}(x)=\sum_{m \in \mathbb{Z}^{d}} \hat{x}(m) \otimes U^{m} z^{m}
$$

Then π_{z} is an isometry on $L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} \mathbb{T}_{\theta}^{d}\right)$. We consider $z \mapsto \pi_{z}(x)$ as a function from \mathbb{T}^{d} to $L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} \mathbb{T}_{\theta}^{d}\right)$. Then

$$
\|\pi \cdot(x)\|_{L_{p}\left(\mathbb{T}^{d} ; L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} \mathbb{T}_{\theta}^{d}\right)\right)}=\|x\|_{L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} \mathbb{T}_{\theta}^{d}\right)}
$$

Theorem. Let $2 \leq p \leq \infty$. Then

$$
M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)=M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right)
$$

Proof. Easy direction (independently by Junge, Mei, Parcet):

$$
M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right) \subset M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)
$$

The tool is transference. Let $\phi \in M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right)$ and $x \in L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes}_{\mathbb{T}_{\theta}^{d}}^{d}\right)$. For $z \in \mathbb{T}^{d}$ define

$$
\pi_{z}(x)=\sum_{m \in \mathbb{Z}^{d}} \hat{x}(m) \otimes U^{m} z^{m}
$$

Then π_{z} is an isometry on $L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} \mathbb{T}_{\theta}^{d}\right)$. We consider $z \mapsto \pi_{z}(x)$ as a function from \mathbb{T}^{d} to $L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} \mathbb{T}_{\theta}^{d}\right)$. Then

$$
\|\pi \cdot(x)\|_{L_{p}\left(\mathbb{T}^{d} ; L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} \mathbb{T}_{\theta}^{d}\right)\right)}=\|x\|_{L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} \mathbb{T}_{\theta}^{d}\right)}
$$

On the other hand,

$$
\pi_{z}\left(T_{\phi}(x)\right)=T_{\phi}\left(\pi_{z}(x)\right)
$$

Here T_{ϕ} on the left is the Fourier multiplier on $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ while T_{ϕ} on the right is the Fourier multiplier on $L_{p}\left(\mathbb{T}^{d}\right)$.
It then follows that ϕ is a cb Fourier multiplier on $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$.

Hard direction: $M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right) \supset M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)$

Hard direction: $M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right) \supset M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)$.
An infinite complex matrix $\alpha=\left(\alpha_{m, n}\right)_{m, n \in \mathbb{Z}^{d}}$ indexed by \mathbb{Z}^{d} is called a Schur multiplier on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$ if the map
$T_{\alpha}:\left(a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}} \mapsto\left(\alpha_{m, n} a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}}$ is bounded on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$.

Hard direction: $M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right) \supset M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)$.
An infinite complex matrix $\alpha=\left(\alpha_{m, n}\right)_{m, n \in \mathbb{Z}^{d}}$ indexed by \mathbb{Z}^{d} is called a Schur multiplier on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$ if the map
$T_{\alpha}:\left(a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}} \mapsto\left(\alpha_{m, n} a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}}$ is bounded on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$.
Let $A=\left(a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}} \in S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$. Define

$$
\pi_{U}(A)=\operatorname{diag}\left(U^{m}\right)_{m \in \mathbb{Z}^{d}} A \operatorname{diag}\left(U^{-m}\right)_{m \in \mathbb{Z}^{d}} .
$$

Hard direction: $M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right) \supset M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)$
An infinite complex matrix $\alpha=\left(\alpha_{m, n}\right)_{m, n \in \mathbb{Z}^{d}}$ indexed by \mathbb{Z}^{d} is called a Schur multiplier on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$ if the map
$T_{\alpha}:\left(a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}} \mapsto\left(\alpha_{m, n} a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}}$ is bounded on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$.
Let $A=\left(a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}} \in S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$. Define

$$
\pi_{U}(A)=\operatorname{diag}\left(U^{m}\right)_{m \in \mathbb{Z}^{d}} A \operatorname{diag}\left(U^{-m}\right)_{m \in \mathbb{Z}^{d}}
$$

Then

$$
\left\|\pi_{U}(A)\right\|_{L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} \mathbb{T}_{\theta}^{d}\right)}=\|A\|_{S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)} .
$$

Hard direction: $M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right) \supset M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)$.
An infinite complex matrix $\alpha=\left(\alpha_{m, n}\right)_{m, n \in \mathbb{Z}^{d}}$ indexed by \mathbb{Z}^{d} is called a Schur multiplier on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$ if the map
$T_{\alpha}:\left(a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}} \mapsto\left(\alpha_{m, n} a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}}$ is bounded on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$.
Let $A=\left(a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}} \in S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$. Define

$$
\pi_{U}(A)=\operatorname{diag}\left(U^{m}\right)_{m \in \mathbb{Z}^{d}} A \operatorname{diag}\left(U^{-m}\right)_{m \in \mathbb{Z}^{d}}
$$

Then

$$
\left\|\pi_{U}(A)\right\|_{L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} \mathbb{T}_{\theta}^{d}\right)}=\|A\|_{S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)} .
$$

Let $\phi \in M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)$ and $\alpha=(\phi(m-n))_{m, n \in \mathbb{Z}^{d}}$. It is easy to check that

$$
T_{\phi}\left(\pi_{U}(A)\right)=\pi_{U}\left(T_{\alpha}(A)\right)
$$

Whence α is a Schur multiplier on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$.

Hard direction: $M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right) \supset M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)$.
An infinite complex matrix $\alpha=\left(\alpha_{m, n}\right)_{m, n \in \mathbb{Z}^{d}}$ indexed by \mathbb{Z}^{d} is called a Schur multiplier on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$ if the map
$T_{\alpha}:\left(a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}} \mapsto\left(\alpha_{m, n} a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}}$ is bounded on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$.
Let $A=\left(a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}} \in S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$. Define

$$
\pi_{U}(A)=\operatorname{diag}\left(U^{m}\right)_{m \in \mathbb{Z}^{d}} A \operatorname{diag}\left(U^{-m}\right)_{m \in \mathbb{Z}^{d}}
$$

Then

$$
\left\|\pi_{U}(A)\right\|_{L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} T_{\theta}^{d}\right)}=\|A\|_{S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)}
$$

Let $\phi \in M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)$ and $\alpha=(\phi(m-n))_{m, n \in \mathbb{Z}^{d}}$. It is easy to check that

$$
T_{\phi}\left(\pi_{U}(A)\right)=\pi_{U}\left(T_{\alpha}(A)\right)
$$

Whence α is a Schur multiplier on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$. Considering matrices A with entries in S_{p}, we prove in the same way that α is cb.

Hard direction: $M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right) \supset M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)$.
An infinite complex matrix $\alpha=\left(\alpha_{m, n}\right)_{m, n \in \mathbb{Z}^{d}}$ indexed by \mathbb{Z}^{d} is called a Schur multiplier on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$ if the map
$T_{\alpha}:\left(a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}} \mapsto\left(\alpha_{m, n} a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}}$ is bounded on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$.
Let $A=\left(a_{m, n}\right)_{m, n \in \mathbb{Z}^{d}} \in S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$. Define

$$
\pi_{U}(A)=\operatorname{diag}\left(U^{m}\right)_{m \in \mathbb{Z}^{d}} A \operatorname{diag}\left(U^{-m}\right)_{m \in \mathbb{Z}^{d}}
$$

Then

$$
\left\|\pi_{U}(A)\right\|_{L_{p}\left(B\left(\ell_{2}\right) \bar{\otimes} T_{\theta}^{d}\right)}=\|A\|_{S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)}
$$

Let $\phi \in M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}_{\theta}^{d}\right)\right)$ and $\alpha=(\phi(m-n))_{m, n \in \mathbb{Z}^{d}}$. It is easy to check that

$$
T_{\phi}\left(\pi_{U}(A)\right)=\pi_{U}\left(T_{\alpha}(A)\right)
$$

Whence α is a Schur multiplier on $S_{p}\left(\ell_{2}\left(\mathbb{Z}^{d}\right)\right)$. Considering matrices A with entries in S_{p}, we prove in the same way that α is cb . Then it is well known that ϕ is a cb multiplier on $L_{p}\left(\mathbb{T}^{d}\right)$ for $p=\infty$. By a very recent transference theorem of
Neuwirth-Ricard, this latter result remains true for $p<\infty$. Thus $\phi \in M_{\mathrm{cb}}\left(L_{p}\left(\mathbb{T}^{d}\right)\right)$.

Summation methods

Let $x \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ with $1 \leq p \leq \infty$.

- Square Fejer means:

$$
F_{n}[x]=\sum_{m \in \mathbb{Z}^{d},\left|m_{j}\right| \leq n}\left(1-\frac{\left|m_{1}\right|}{n+1}\right) \cdots\left(1-\frac{\left|m_{d}\right|}{n+1}\right) \hat{x}(m) U^{m}
$$

- Circular Poisson means:

$$
\mathbb{P}_{r}(x)=\sum_{m \in \mathbb{Z}^{d}} \hat{x}(m) r^{\mid m m_{2}} U^{m}
$$

where $\mid m_{2}=\left(\left|m_{1}\right|^{2}+\cdots+\left|m_{d}\right|^{2}\right)^{1 / 2}$.
Fundamental problem: In which sense do these means of x converge back to x ?

Mean convergence

Proposition (mean convergence theorem).
Let $1 \leq p<\infty$. If $x \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ then

$$
\lim _{n \rightarrow \infty} F_{n}[x]=\lim _{r \rightarrow \infty} \mathbb{P}_{r}[x]=x \text { in } L_{p}\left(\mathbb{T}_{\theta}^{d}\right) .
$$

Mean convergence

Proposition (mean convergence theorem).
Let $1 \leq p<\infty$. If $x \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ then

$$
\lim _{n \rightarrow \infty} F_{n}[x]=\lim _{r \rightarrow \infty} \mathbb{P}_{r}[x]=x \text { in } L_{p}\left(\mathbb{T}_{\theta}^{d}\right) .
$$

But the problem for the pointwise convergence is hard and delicate for several raisons:

- We are dealing with operators instead of functions.
- Usually in the commutative case, a pointwise convergence theorem is based on the corresponding mean theorem and maximal inequality.

Pointwise convergence

Definition (C. Lance)
A sequence $\left(x_{n}\right)$ in $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ is said to converge bilaterally almost uniformly (b.a.u.) to x if for any $\varepsilon>0$ there is a projection $e \in \mathbb{T}_{\theta}^{d}$ s.t.

$$
\tau(1-e)<\varepsilon \text { and } \lim _{n \rightarrow \infty}\left\|e\left(x_{n}-x\right) e\right\|_{\infty}=0 .
$$

Remark. In the commutative case this is equivalent to the almost everywhere convergence (Egorov's theorem).
Question. Let $1 \leq p \leq \infty$ and $x \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. Do we have

$$
F_{n}[x] \xrightarrow{\text { b.a. }} x \text { as } n \rightarrow \infty \text { and } \mathbb{P}_{r}[x] \xrightarrow{\text { b.a. }} x \text { as } r \rightarrow \infty ?
$$

Maximal inequalities

This is a subtle part of the talk. We don't have the noncommutative analogue of the usual pointwise maximal function. Even for any positive 2×2-matrices a, b, $\max (a, b)$ does not make any sense

Maximal inequalities

This is a subtle part of the talk. We don't have the noncommutative analogue of the usual pointwise maximal function. Even for any positive 2×2-matrices a, b,

$$
\max (a, b) \text { does not make any sense }
$$

Instead, we define the space $L_{p}\left(\mathbb{T}_{\theta}^{d} ; \ell_{\infty}\right)$. For a sequence $x=\left(x_{n}\right)$ of positive operators in $L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ we define x to be in $L_{p}\left(\mathbb{T}_{\theta}^{d} ; \ell_{\infty}\right)$ if there is a positive $a \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ s.t.

$$
x_{n} \leq a, \quad \forall n \in \mathbb{N}
$$

Then $\|x\|_{L_{p}\left(\mathbb{T}_{\theta}^{d} ; \ell_{\infty}\right)}$ is defined to be inf $\|a\|_{p}$.
Remark. We skip the definition of $\|x\|_{L_{p}\left(\mathbb{T}_{\theta}^{d} ; \ell_{\infty}\right)}$ for a general x. This norm is denoted by $\left\|\sup _{n}^{+} x_{n}\right\|_{p}$. Note that this is only a notation since sup x_{n} does not make any sense in the noncommutative setting.

Theorem (maximal inequalities): $1<p \leq \infty, x \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. Then

$$
\left\|\sup _{n \geq 1}^{+} F_{n}[x]\right\|_{p} \leq C_{p}\|x\|_{p} \quad \text { and } \quad\left\|\sup _{r>0}^{+} \mathbb{P}_{r}[x]\right\|_{p} \leq C_{p}\|x\|_{p}
$$

In particular, if x is positive, then there is $a \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ s.t.

$$
\|a\|_{p} \leq C_{p}\|x\|_{p}
$$

and

$$
F_{n}[x] \leq a, \quad \forall n \geq 1 \quad \text { and } \quad \mathbb{P}_{r}[x] \leq a, \quad \forall 0 \leq r<1
$$

For $p=1$ we have a weak type $(1,1)$ substitute.

Theorem (maximal inequalities): $1<p \leq \infty, x \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. Then

$$
\left\|\sup _{n \geq 1}^{+} F_{n}[x]\right\|_{p} \leq C_{p}\|x\|_{p} \quad \text { and } \quad\left\|\sup _{r>0}^{+} \mathbb{P}_{r}[x]\right\|_{p} \leq C_{p}\|x\|_{p}
$$

In particular, if x is positive, then there is $a \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ s.t.

$$
\|a\|_{p} \leq C_{p}\|x\|_{p}
$$

and

$$
F_{n}[x] \leq a, \quad \forall n \geq 1 \quad \text { and } \quad \mathbb{P}_{r}[x] \leq a, \quad \forall 0 \leq r<1
$$

For $p=1$ we have a weak type $(1,1)$ substitute.
Idea of proof. $\left(\mathbb{P}_{r}\right)_{0 \leq r<1}$ is a semigroup of trace preserving positive maps. Applying the noncommutative maximal ergodic inequality (Junge-Xu), we get the maximal inequality for \mathbb{P}_{r}. The proof for the Fejer means $F_{n}[x]$ uses transference and Tao Mei's noncommutative Hardy-Littlewood maximal inequality. The case $p=1$ is much harder.

Theorem (maximal inequalities): $1<p \leq \infty, x \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. Then

$$
\left\|\sup _{n \geq 1}^{+} F_{n}[x]\right\|_{p} \leq C_{p}\|x\|_{p} \quad \text { and } \quad\left\|\sup _{r>0}^{+} \mathbb{P}_{r}[x]\right\|_{p} \leq C_{p}\|x\|_{p} .
$$

In particular, if x is positive, then there is $a \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ s.t.

$$
\|a\|_{p} \leq C_{p}\|x\|_{p}
$$

and

$$
F_{n}[x] \leq a, \quad \forall n \geq 1 \quad \text { and } \quad \mathbb{P}_{r}[x] \leq a, \quad \forall 0 \leq r<1 .
$$

For $p=1$ we have a weak type $(1,1)$ substitute.
Idea of proof. $\left(\mathbb{P}_{r}\right)_{0 \leq r<1}$ is a semigroup of trace preserving positive maps. Applying the noncommutative maximal ergodic inequality (Junge-Xu), we get the maximal inequality for \mathbb{P}_{r}. The proof for the Fejer means $F_{n}[x]$ uses transference and Tao Mei's noncommutative Hardy-Littlewood maximal inequality.
The case $p=1$ is much harder.
Corollary. Let $1 \leq p \leq \infty$ and $x \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$. Then

$$
F_{n}[x] \xrightarrow{\text { b.a.u }} x \text { as } n \rightarrow \infty \text { and } \mathbb{P}_{r}[x] \xrightarrow{\text { b.a.u }} x \text { as } r \rightarrow \infty .
$$

Square function inequalities

For $x \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ we define Littlewood-Paley g-functions

$$
G_{c}(x)=\left(\int_{0}^{1}\left|\frac{d}{d r} \mathbb{P}_{r}[x]\right|^{2}(1-r) d r\right)^{1 / 2} \text { and } G_{r}(x)=G_{c}\left(x^{*}\right),
$$

where \mathbb{P}_{r} denotes the circular Poisson means:

$$
\mathbb{P}_{r}[x]=\sum_{m \in \mathbb{Z}^{d}} \hat{x}(m) r^{|m|_{2}} U^{m}
$$

Square function inequalities

For $x \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ we define Littlewood-Paley g-functions

$$
G_{c}(x)=\left(\int_{0}^{1}\left|\frac{d}{d r} \mathbb{P}_{r}[x]\right|^{2}(1-r) d r\right)^{1 / 2} \text { and } G_{r}(x)=G_{c}\left(x^{*}\right),
$$

where \mathbb{P}_{r} denotes the circular Poisson means:

$$
\mathbb{P}_{r}[x]=\sum_{m \in \mathbb{Z}^{d}} \hat{x}(m) r^{|m|_{2}} U^{m}
$$

Theorem. Let $2 \leq p<\infty$. Then

$$
\|x\|_{p} \approx \max \left(\left\|G_{c}(x)\right\|_{p},\left\|G_{r}(x)\right\|_{p}\right) .
$$

Idea of proof. Use square function inequalities for general quantum semigroups of Junge-Le Merdy-Xu.

Square function inequalities

For $x \in L_{p}\left(\mathbb{T}_{\theta}^{d}\right)$ we define Littlewood-Paley g-functions

$$
G_{c}(x)=\left(\int_{0}^{1}\left|\frac{d}{d r} \mathbb{P}_{r}[x]\right|^{2}(1-r) d r\right)^{1 / 2} \text { and } G_{r}(x)=G_{c}\left(x^{*}\right),
$$

where \mathbb{P}_{r} denotes the circular Poisson means:

$$
\mathbb{P}_{r}[x]=\sum_{m \in \mathbb{Z}^{d}} \hat{x}(m) r^{|m|_{2}} U^{m}
$$

Theorem. Let $2 \leq p<\infty$. Then

$$
\|x\|_{p} \approx \max \left(\left\|G_{c}(x)\right\|_{p},\left\|G_{r}(x)\right\|_{p}\right) .
$$

Idea of proof. Use square function inequalities for general quantum semigroups of Junge-Le Merdy-Xu.
Remark. 1) A similar inequality for $1<p<2$ by replacing max by an inf.
2) For $p=1$ we can introduce the corresponding Hardy space H_{1} and describe its dual space as a BMO space.

