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Quantum tori

Let θ ∈ R. Let U and V be two unitary operators on a Hilbert
space H satisfying the following commutation relation:

UV = e2πiθVU.

Example: H = L2(T) with T the unit circle; U and V are given:

Uf (z) = zf (z) and Vf (z) = f (e−2πiθz), f ∈ L2(T), z ∈ T.
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Example: H = L2(T) with T the unit circle; U and V are given:

Uf (z) = zf (z) and Vf (z) = f (e−2πiθz), f ∈ L2(T), z ∈ T.

Let Aθ be the universal C*-algebra generated by U and V . This
is a quantum (or noncommutative) 2-torus. If θ is irrational, Aθ

is an irrational rotation C*-algebra. The quantum tori are
fundamental examples, probably the most accessible examples
for operator algebras and noncommutative geometry.



More generally, let d ≥ 2 and θ = (θkj) be a d × d real
skew-symmetric matrix, i.e. θt = −θ. Let U1, . . . ,Ud be d unitary
operators on H satisfying

UkUj = e2πiθkj UjUk , j ,k = 1, . . . ,d .

Let Aθ be the universal C*-algebra generated by U1, . . . ,Ud .
This is the noncommutative d -torus associated with θ.

In this talk U = (U1,⋯,Ud), θ and Aθ will be fixed as above.
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skew-symmetric matrix, i.e. θt = −θ. Let U1, . . . ,Ud be d unitary
operators on H satisfying

UkUj = e2πiθkj UjUk , j ,k = 1, . . . ,d .

Let Aθ be the universal C*-algebra generated by U1, . . . ,Ud .
This is the noncommutative d -torus associated with θ.

In this talk U = (U1,⋯,Ud), θ and Aθ will be fixed as above.

Notation used throughout the talk :

▸ Elements of Zd are denoted by m = (m1,⋯,md).
▸ T

d is the usual d -torus:

T
d = {(z1, . . . ,zd) ∶ ∣zj ∣ = 1,zj ∈ C}

▸ For m ∈ Zd and z = (z1, . . . ,zd) ∈ Td let

zm = zm1
1 ⋯zmd

d and Um = Um1
1 ⋯Umd

d ,

where U = (U1, . . . ,Ud).



Trace - noncommutative measure

A polynomial in U = (U1,⋯,Ud) is a finite sum

x = ∑
m∈Zd

αmUm ∈ Aθ with αm ∈ C.

Let Pθ denote the involutive subalgebra of all such polynomials.
Then Pθ is dense in Aθ. For any x as above define

τ(x) = α0 with 0 = (0,⋯,0).

Then τ extends to a faithful tracial state on Aθ.
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x = ∑
m∈Zd

αmUm ∈ Aθ with αm ∈ C.

Let Pθ denote the involutive subalgebra of all such polynomials.
Then Pθ is dense in Aθ. For any x as above define

τ(x) = α0 with 0 = (0,⋯,0).

Then τ extends to a faithful tracial state on Aθ.
Let Td

θ be the w*-closure of Aθ in the GNS representation of τ .
Then τ becomes a normal faithful tracial state on T

d
θ . Thus

(Td
θ , τ) is a tracial noncommutative probability space.



Noncommutative Lp-spaces
For 1 ≤ p < ∞ and x ∈ Td

θ let

∥x∥p = (τ(∣x ∣p))
1
p with ∣x ∣ = (x∗x)

1
2 .

This defines a norm on T
d
θ . The corresponding completion is

denoted by Lp(Td
θ ). We also set L∞(Td

θ ) = T
d
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θ )



Fourier coefficients

The trace τ extends to a contractive functional on L1(Td
θ ). Thus

given x ∈ Lp(Td
θ ) define

x̂(m) = τ((Um)∗x) = αm, m ∈ Zd .

These are the Fourier coefficients of x . Like in the classical
case we formally write

x ∼ ∑
m∈Zd

x̂(m)Um.

This is the Fourier series of x ; x is uniquely determined by its
Fourier series.
We will study various properties of Fourier series like
multipliers, mean and pointwise convergence.



Fourier multipliers on the usual d-torus

Let φ = {φm}m∈Zd ⊂ C. Recall that φ is a Fourier multiplier on
Lp(Td) if the map

∑
m∈Zd

αmzm ↦ ∑
m∈Zd

φmαmzm

is bounded on Lp(Td). Let M(Lp(Td)) denote the space of all
Fourier multipliers on Lp(Td), equipped with the natural norm.



Fourier multipliers on the usual d-torus

Let φ = {φm}m∈Zd ⊂ C. Recall that φ is a Fourier multiplier on
Lp(Td) if the map

∑
m∈Zd

αmzm ↦ ∑
m∈Zd

φmαmzm

is bounded on Lp(Td). Let M(Lp(Td)) denote the space of all
Fourier multipliers on Lp(Td), equipped with the natural norm.

Simple facts.

▸ M(L2(Td)) = ℓ∞(Zd)
▸ M(Lp(Td)) =M(Lp′(Td)) with p′ the conjugate index of p

▸ φ ∈M(L1(Td)) iff φ is the Fourier transform of a bounded
measure, i.e., ∃µ, a bounded measure on T

d s.t. µ̂(m) = φm

for all m ∈ Zd .



Completely bounded multipliers

We will also need completely bounded multipliers. Recall that a
map T is completely bounded (cb for short) on Lp(Td) if
T ⊗ IdSp is bounded on Lp(Td ;Sp), where Sp denotes the
Schatten p-class. We then set

∥T ∥cb = ∥T ⊗ IdSp∥.

φ is called a cb Fourier multiplier on Lp(Td) if Tφ is cb on
Lp(Td). Mcb(Lp(Td)) denotes the space of all cb Fourier
multipliers on Lp(Td).



Completely bounded multipliers

We will also need completely bounded multipliers. Recall that a
map T is completely bounded (cb for short) on Lp(Td) if
T ⊗ IdSp is bounded on Lp(Td ;Sp), where Sp denotes the
Schatten p-class. We then set

∥T ∥cb = ∥T ⊗ IdSp∥.

φ is called a cb Fourier multiplier on Lp(Td) if Tφ is cb on
Lp(Td). Mcb(Lp(Td)) denotes the space of all cb Fourier
multipliers on Lp(Td).

It is known that

Mcb(Lp(Td)) =M(Lp(Td))

for p ∈ {1,2,∞}, and only for these three values of p.
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Similarly, we define Fourier multipliers on the noncommutative
d -torus T
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Again, let φ = {φm}m∈Zd ⊂ C and

Tφ ∶ ∑
m∈Zd

αmUm ↦ ∑
m∈Zd

φmαmUm

for any polynomial x ∈ Pθ. We call φ a Fourier multiplier on
Lp(Td

θ ) if Tφ extends to a bounded map on Lp(Td
θ ). Let

M(Lp(Td
θ )) denote the space of all Lp Fourier multipliers on T

d
θ .

Similarly, we define cb Fourier multipliers on Lp(Td
θ ) and

introduce the corresponding space Mcb(Lp(Td
θ )).

Recall that Tφ is cb on Lp(Td
θ ) if Id⊗ T is bounded on

Lp(B(ℓ2)⊗̄Td
θ ).
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On the other hand,

πz(Tφ(x)) = Tφ(πz(x)).

Here Tφ on the left is the Fourier multiplier on Lp(Td
θ ) while Tφ

on the right is the Fourier multiplier on Lp(Td).
It then follows that φ is a cb Fourier multiplier on Lp(Td

θ ).
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An infinite complex matrix α = (αm,n)m,n∈Zd indexed by Z
d is

called a Schur multiplier on Sp(ℓ2(Zd)) if the map
Tα ∶ (am,n)m,n∈Zd ↦ (αm,nam,n)m,n∈Zd is bounded on Sp(ℓ2(Zd)).
Let A = (am,n)m,n∈Zd ∈ Sp(ℓ2(Zd)). Define

πU(A) = diag(Um)m∈Zd A diag(U−m)m∈Zd .

Then
∥πU(A)∥Lp(B(ℓ2)⊗̄T

d
θ
) = ∥A∥Sp(ℓ2(Zd)).

Let φ ∈Mcb(Lp(Td
θ )) and α = (φ(m − n))m,n∈Zd . It is easy to

check that
Tφ(πU(A)) = πU(Tα(A)).

Whence α is a Schur multiplier on Sp(ℓ2(Zd)). Considering
matrices A with entries in Sp, we prove in the same way that α
is cb. Then it is well known that φ is a cb multiplier on Lp(Td)
for p = ∞. By a very recent transference theorem of
Neuwirth-Ricard, this latter result remains true for p < ∞. Thus
φ ∈Mcb(Lp(Td)).



Summation methods

Let x ∈ Lp(Td
θ ) with 1 ≤ p ≤ ∞.

▸ Square Fejer means:

Fn[x] = ∑
m∈Zd , ∣mj ∣≤n

(1 − ∣m1∣
n + 1

)⋯(1 − ∣md ∣
n + 1

)x̂(m)Um

▸ Circular Poisson means:

Pr(x) = ∑
m∈Zd

x̂(m)r ∣m∣2Um

where ∣m∣2 = (∣m1∣2 +⋯+ ∣md ∣2)1/2.

Fundamental problem : In which sense do these means of x
converge back to x?
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Proposition (mean convergence theorem).
Let 1 ≤ p < ∞. If x ∈ Lp(Td

θ ) then

lim
n→∞

Fn[x] = lim
r→∞

Pr [x] = x in Lp(Td
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Mean convergence

Proposition (mean convergence theorem).
Let 1 ≤ p < ∞. If x ∈ Lp(Td

θ ) then

lim
n→∞

Fn[x] = lim
r→∞

Pr [x] = x in Lp(Td
θ ).

But the problem for the pointwise convergence is hard and
delicate for several raisons:

▸ We are dealing with operators instead of functions.

▸ Usually in the commutative case, a pointwise convergence
theorem is based on the corresponding mean theorem and
maximal inequality.



Pointwise convergence

Definition (C. Lance)
A sequence (xn) in Lp(Td

θ ) is said to converge bilaterally almost
uniformly (b.a.u.) to x if for any ε > 0 there is a projection e ∈ Td

θ

s.t.
τ(1 − e) < ε and lim

n→∞
∥e(xn − x)e∥∞ = 0.

Remark. In the commutative case this is equivalent to the
almost everywhere convergence (Egorov’s theorem).

Question. Let 1 ≤ p ≤ ∞ and x ∈ Lp(Td
θ ). Do we have

Fn[x] b.a.uÐÐ→ x as n →∞ and Pr [x] b.a.uÐÐ→ x as r →∞?



Maximal inequalities

This is a subtle part of the talk. We don’t have the
noncommutative analogue of the usual pointwise maximal
function. Even for any positive 2 × 2-matrices a,b,

max(a,b) does not make any sense



Maximal inequalities

This is a subtle part of the talk. We don’t have the
noncommutative analogue of the usual pointwise maximal
function. Even for any positive 2 × 2-matrices a,b,

max(a,b) does not make any sense

Instead, we define the space Lp(Td
θ ; ℓ∞). For a sequence

x = (xn) of positive operators in Lp(Td
θ ) we define x to be in

Lp(Td
θ ; ℓ∞) if there is a positive a ∈ Lp(Td

θ ) s.t.

xn ≤ a, ∀ n ∈ N.

Then ∥x∥Lp(Td
θ
;ℓ∞)

is defined to be inf ∥a∥p.

Remark. We skip the definition of ∥x∥Lp(Td
θ
;ℓ∞)

for a general x .
This norm is denoted by ∥sup+n xn∥p. Note that this is only a
notation since sup xn does not make any sense in the
noncommutative setting.



Theorem (maximal inequalities): 1 < p ≤ ∞, x ∈ Lp(Td
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For p = 1 we have a weak type (1, 1) substitute.
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θ ). Then
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n≥1

+Fn[x]∥p ≤ Cp∥x∥p and ∥sup
r>0

+
Pr [x]∥p ≤ Cp∥x∥p.

In particular, if x is positive, then there is a ∈ Lp(Td
θ ) s.t.

∥a∥p ≤ Cp∥x∥p
and

Fn[x] ≤ a, ∀n ≥ 1 and Pr [x] ≤ a, ∀0 ≤ r < 1.

For p = 1 we have a weak type (1, 1) substitute.
Idea of proof. (Pr)0≤r<1 is a semigroup of trace preserving
positive maps. Applying the noncommutative maximal ergodic
inequality (Junge-Xu), we get the maximal inequality for Pr . The
proof for the Fejer means Fn[x] uses transference and Tao
Mei’s noncommutative Hardy-Littlewood maximal inequality.
The case p = 1 is much harder.



Theorem (maximal inequalities): 1 < p ≤ ∞, x ∈ Lp(Td
θ ). Then

∥sup
n≥1

+Fn[x]∥p ≤ Cp∥x∥p and ∥sup
r>0

+
Pr [x]∥p ≤ Cp∥x∥p.

In particular, if x is positive, then there is a ∈ Lp(Td
θ ) s.t.

∥a∥p ≤ Cp∥x∥p
and

Fn[x] ≤ a, ∀n ≥ 1 and Pr [x] ≤ a, ∀0 ≤ r < 1.

For p = 1 we have a weak type (1, 1) substitute.
Idea of proof. (Pr)0≤r<1 is a semigroup of trace preserving
positive maps. Applying the noncommutative maximal ergodic
inequality (Junge-Xu), we get the maximal inequality for Pr . The
proof for the Fejer means Fn[x] uses transference and Tao
Mei’s noncommutative Hardy-Littlewood maximal inequality.
The case p = 1 is much harder.
Corollary. Let 1 ≤ p ≤ ∞ and x ∈ Lp(Td

θ ). Then

Fn[x] b.a.uÐÐ→ x as n →∞ and Pr [x] b.a.uÐÐ→ x as r →∞ .



Square function inequalities
For x ∈ Lp(Td

θ ) we define Littlewood-Paley g-functions

Gc(x) = (∫
1

0
∣ d
dr

Pr [x]∣2(1 − r)dr)1/2 and Gr(x) = Gc(x∗),

where Pr denotes the circular Poisson means:

Pr [x] = ∑
m∈Zd

x̂(m)r ∣m∣2Um



Square function inequalities
For x ∈ Lp(Td

θ ) we define Littlewood-Paley g-functions

Gc(x) = (∫
1

0
∣ d
dr

Pr [x]∣2(1 − r)dr)1/2 and Gr(x) = Gc(x∗),

where Pr denotes the circular Poisson means:

Pr [x] = ∑
m∈Zd

x̂(m)r ∣m∣2Um

Theorem. Let 2 ≤ p < ∞. Then

∥x∥p ≈max (∥Gc(x)∥p, ∥Gr(x)∥p).

Idea of proof. Use square function inequalities for general
quantum semigroups of Junge-Le Merdy-Xu.



Square function inequalities
For x ∈ Lp(Td

θ ) we define Littlewood-Paley g-functions

Gc(x) = (∫
1

0
∣ d
dr

Pr [x]∣2(1 − r)dr)1/2 and Gr(x) = Gc(x∗),

where Pr denotes the circular Poisson means:

Pr [x] = ∑
m∈Zd

x̂(m)r ∣m∣2Um

Theorem. Let 2 ≤ p < ∞. Then

∥x∥p ≈max (∥Gc(x)∥p, ∥Gr(x)∥p).

Idea of proof. Use square function inequalities for general
quantum semigroups of Junge-Le Merdy-Xu.
Remark. 1) A similar inequality for 1 < p < 2 by replacing max
by an inf.
2) For p = 1 we can introduce the corresponding Hardy space
H1 and describe its dual space as a BMO space.


